首页> 外文OA文献 >Bearing Fault Diagnostics Using the Spetractal Pattern Recognition
【2h】

Bearing Fault Diagnostics Using the Spetractal Pattern Recognition

机译:利用分形模式识别的轴承故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.
机译:在滚动轴承的诊断领域,诸如光谱峰度和二阶周期平稳性之类的复杂技术的发展,扩展了专业用户的能力,不仅可以识别轴承中是否存在损伤,还可以识别轴承中损坏的位置。如前所述,大多数信号分析方法会产生类似频谱的图表,在出现损坏的情况下,会在某些理论特征频率附近显示线路频率或峰值。这些频率仅取决于损坏位置,轴承几何形状和转速。该领域的主要改进将是开发高度自动化的算法。本文针对这一重要目标,首次讨论了如何根据不同的工作条件(即速度,转矩和润滑),将这些峰从理论上的预期频率中分离出来。在简要介绍了与每种类型的损坏相关的峰值模式后,本文显示了与理论预期频率之间的典型偏差幅度。研究的最后一部分提出了一些有关提高自动算法可靠性的评论。该研究基于使用安装在变速箱中的人为损坏的轴承获得的实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号